TAXONOMY AND BIOLOGY OF A NEW SPECIES OF ZAPHANERA (HEMIPTERA: ALEYRODIDAE) AND ITS ASSOCIATION WITH THE WIDESPREAD DEATH OF WESTERN MYALL TREES, ACACIA PAPYROCARPA, NEAR ROXBY DOWNS, SOUTH AUSTRALIA

by P. T. Bailey*, J. H. Martin", J. S. Noyis \& A. D. Austin ${ }^{\ddagger}$

Summary

Abstract

Ball'y, P. T., Martiv, I. H., Noyfs, J. S. \& Ausin, A. D. (2001) Tixonomy and biology of a new species of Kaphanera (Hemiptera: Alcyrodidac) and itsassociation with the widespread death of western myall trees, Acaria propymenthe, near Roxby Downs, South Ausiralia, Trans: R. Soc. S. Aust, 125(2) 83-96, 30 November, 2001.

An outbreak of western myall whitefly, a new species of Zaphanera (Hemiptera: Aleyrodidae), is associated with dieback and death of western myall trees, Acucia papprocarpa Bentham, in a desert area of about 10,000 kmi in Soult Australia. Both young and mature irees up to several hundred years old are affected. Dealh of foliage appears to be related to large numbers of the whitelly feeding on phyllocles. A new species of the parasitoid Zowhopoloides (1lymenopicra: Encyrtidac) emerged from whitelly pupac and appears 10 be the first encyrtid authenticated as a true parasitoid of aleyrodids. Possible causes of this outbreak are discussed and include (1) at temporary parasitoid asynchrony with its hosi population, (2) the possibility that western myall whitelly has been newly-introdued to the area on another plant host and has adapted to western myall trees and (3) that the oubreak is symptomatic of a widespread decline in the healih of trees. All life-history stages of the new species of Zaphanero and the new species of the parasitoid Zarhopaloides are described.

Kt:h Words: Zaphanera, Zahtopatoides, Acacia papyonaria Benthan, western myall whitelly, western myall tree, outbreak, iree death.

Introduction

Western myal,, Acucia papyrocarpa Bentham, is a desert adapted tree of chenopod shrublands on caleareous soils in the $150-300 \mathrm{~mm}$ (predominantly winter) rainfall zones of northern Spencer Gull, along the margins of the Nullarbor Plain of South Australia, and in the Eastern Goldficlds of Western Australia. Much of this area is used for grazing sheep and catle for which the trees provide shelter: Western myall shares the eastern parts of its range with mulga. Acacia ancura F. Muell., to form a mixed speeies woodland.

Western myall trees are slow-growing and may reach $5-6 \mathrm{~m}$ before becoming recumbent (Lange \& Sparrow 1992). Age estimates of mature trees vary

[^0]from 250 years (Coleman et al. 1996^{1}) to $350+$ years (Ireland 1997^{2}). Foliar growth flushes are produced by the tree during summer (November to February) and appear to be independent of rainfall (Ireland 1997극

This paper deseribes an outbreak of an apparently native whitefly species in the genus Zaphanera on western myall whieh has killed trees over a wide area of north-castern South Ausiralia. There is no historical evidence of previous outbreaks of this species on western myall trees anywhere in Australia (nor of any other insect capable of killing so many trees so quickly). We are not aware of previous reports of any whitefly species causing widespread death of perennial trees. Both the whitefly and its eneyrtid wasp parasitoid are deseribed as new and possible reasons for the outbreak are discussed.

Materials and Methods

Taronom?

Terminology for whitelly morphology follows that of Martin (1999) and that for the eneyrtid parasitoid is after Noyes \& Hayat (1994). The following abbreviations are used for institutions:
ANIC, Australian National Insect Collection, CSIRO Entomology, Canberra;
BMNH, The Natural History Muscum, London, UK: USNM, US National Museum of Natural Ilistory, Washington, DC:
WINC, Waite Inseet and Nematode Collection, Waite Campus, $\mathrm{S} \wedge$.

The Jollownug abhreviations are used in the parastoid descriplion:
AL. - aedeagus leryth
$\mathrm{F}_{\mathrm{L}} \mathrm{L}_{2}$ - masimum cye length
IW - masimum cye viddh
Fl-G - lemiole segments 1-ft, be, the liset six
segments uher the pedies
FV - mimimun finntovertex width
I WI. - fore wing length
FWW - tore wine width
(il gondestylus Jength
HW - licad widils
IIWL - hind wing leagh
HWW - hind wige widts
Ml^{\prime} - mid sibia length
MS - malar space
OCL - inimimum distance between posterior ocellas
and ocoipital margin
(o) - ovipusitur Jemgit

OOL - minmuth distance between posterion ocefles and eye thatgits
$P(1$ - minimum distance between postetior ocedi
SL - sciupc lengeth
SW - maximurn scape width

Brolose

The lite cycte of westem myall whitefly was construetod from ten population samples laken al aptroximately monthly intervals during SeptemberApril and less frequently during May-August oven the period December 1999 to December 2000. Whitefly popputation smples were taken from 20 matme trees. individually marked, jusi auside Roxby Downs lownship. At eaeh sampling time. a healthy growing shoot was cut lrom bach tree at approximately 2.5 m feight and individually stored in a paper bag. The samples were examined within IWo days of cullection. On each shoot, five subterminal manore phyllodes were examined and the number and stage of whiteflies were noted using $\times 20$ magnification ander a binocular microscope.
This intensity o! sampline yielded estimates of mean numbers of whitelly with the following standard etrors: for egess, 20% of the mean per phyllode. for each of second and third instar laryite; 25% of mean alnd for the pupal stage, 19% of the mean number per phyllode. First instar (mobile) larvac were prely observed. The prescace of any adults llying around trees was also noted.

During the year 2000, ground surveysalong station tracks delimited tite uxtent of the whitefly intestation. Trees with symptonafie dieback were inspected and the presence of a whitelly noted Nonsymptomatic trees wate examined in every copse encountered along the mote, gencrally allowing at kests 5 km alier each positive record betore resuming sumpling. A tree was chosen $10-20$ in away from the
track but beyond this. 00 special sampline seheme Was used, On cach trees, 50 phyllodes were examined with the and of a land lens and, if any stage so nif whitetly were present. The lree was comuted as postive. If no whiteflies were found on the iree examined, u nearby tree was sampled. If Inis was positive, the site was scored as posifive. The site was scored is negetive only if mo evidence af tite whlen? was liound ont cithernese.

Zaphanct papyrocapae Martin sp. now (17CiS 1-4, 7-17)

Hokirype: के puparimen, Billakilina Statum, $30^{\circ} 166^{\circ}$ S. $136^{\circ} 17^{\circ} \mathrm{E}$, Sombts Anstratia, on phylfodes as Icas'm papyrvearpa, 26.iv. 2000 ($1 . \mathrm{H}$ Martin 7406) (slide-mounted. ANIC)

Paronger: Smoth Austratia (all side-monumed): 9 is \& (pupuria). 16 ? ? (puparia) sance data is holotype ($\triangle N$ NG BMNII. USNM. WINC I 3 b́s (puparia), $69^{\prime \prime}$ (puparia) Roxby Downs lownship. 27 ivzion) (1. 11. Martin) (BMNIL. WINC), 25 puparia, of thiro-instar lervie; I second-instar larsa, vicintly of Roxby Dowas, v. 1999 (J. Zwar) (Δ NIC \% 29 puparia, 6 L3 puparium mid-moult. 9 thid-instar tarvac. 11 first-instar larvac, vicinity of Roxby Downs 20.x. 1999 (P. Bailcy) (BMNNH, WINC): 14 puparia, 2 L3puparium mid-moults, 4 third-instas larvace vicinity of Rosby Downs 11,2000 (1 Hardy) (BMNTI WINC): 11 adull है हो, 4 adull 9 f. vicinity of Roxby Duwns. 14.ii. 2000 (I Bailey) (BMNII): I L.3peparium mid-moult, of thind-instar larvac, 37 second-instan larvac, 5 first-instar larvae, Ruxby Downs township, 25.iv. 2000 (1, H. Martin) (BMNH).

Oher materfal: A large amount of dry material of all larval stages from the above collection sites is beld in BMNH and WINC.

Prqurinu (Fige 3. 4. 7.8)

Shortly after be L3/1 4 moult shining black. donost flat, but with inereasing matutity becoming markedly convex and developing covering of sparse greynsh meal (IJg. 3); entire cephalothoras baling away upon emergence of adulss (Fig. 3); sexually dimophic, male puparia $1.42-1.57 \mathrm{~mm}$ long (1.81 . 0.96 imm wide. widest opposite contluence of fongitudinal and transverse moulting subures (Fig. T); antennal apices undetlying median part of abdominal segment $\mathrm{I} / \mathrm{III}(\mathrm{n}=16)$; female pupariai 1.72-1.45 mun x 1.05-1.18 mon, widest abdominally: intenmal apices terminating between modde and hind lags $(n=14)$; puparia of bolh sexes $1.50-1.80 x$ as lone as wide margin crenulate throughout, lypically $6-8$ rounded teeth wecupying 0.1 mol ol abdominal

1igs 1-6. Life history stagen and damage of western myall whitefly. Zaphonctu puprocarpue Mantin sp. nov. I. Eggs on a phyllode of western myall. 2. One second instar (on left) and third instar larvac on a phyllode. 3. Adult female emerging from puparium. 4. Eges and pupae encrusting phyllodes. 5. Damage by 7. pupyrocapue. A western myall tree in Roxby Downs township with carly symptoms of diebuck associated with Z. papyrocanpor on phyllodes (this tree died six months later). 6. Dead (left) and dying (right) western myall trees in pastoral lando of South Australia. Scale bars $=0.5 \mathrm{~mm} .1 ; 1$ mm, 2-4: $1 \mathrm{~mm}, 5,6$.

Higs 7. 8. Zaphancra papyrocorpoc Martin sp. nov., puparium. 7. Complete puparium with expanded detail of capitate setac and geminate pore/porette pairs. 8 . Dorsal detail of vasiform orifice region (drawn from a tencral puparium). Scale bill $=0.5 \mathrm{~mm}$.

margin: weeth rather irregular hut not modified at catulal and thoracic tracheal openings at matrgin; anterion and posterior marginal setac present: dorsal chactotaxy difficult to discern in mature piparia; all dorsal setac short. Capitate, single pair of sth abdominal setac placed anterion and slightly lateral to vasiform orilice: abdomen usually with o wuter sulvmargimal pairs, ecphalothorax natally whith is
single outer submarginat pair and 2 subdersal pairs of setae (Fig. 7), but cephalice (submedian) setace absent: dorsum with longitudinal moulting sutare feathing puparial margin; transverse moulting sutures curving anterolaterally and reaching margin. abdominal segmentation ats shown, the intersegmental divisions of abdominal segments 11/III to VI/VII exaggerated, thickened, suture like,
oft corviog sharply zonterizd and alooss reachome perartal magime abdennimal division VIl/VIfI less exaggeraled but alsen chosely approaching mavem, submedian pockets vaibably marked depemsting an deggee of manuily: abdominal segment Vll mou reduced if length medisily: abodominal radebis everolent, with latesal ames short (nod to be conlused with long inturegmenal divisions) patir af submedian pombtorioty direetoal tubseceles on posterior atge of sach of abdominal seghents 1-VI ithol with a pait of sigatar anterionly diecered nibercle eon the anterion edge ol each of segemenis IIVII. Hiell appearme as 6 pairs of charateristic darker ${ }^{-X} \mathrm{X}^{\prime \prime}$ ligures; submedian abdemminal depressions present hut camouflaged by these ruberolen: kephatothoracic equivalents searly marked by irregutar riugs uf paler markinges. shbnargin with row of tiny promes. seen to be gemitase pore/porette pairs only in toncral specimens, simidar pores seen in small gronpsadjacent is submedian deprestions, vasitoron orifice Lordate. slightly elevated posterolaterally. inlly aceupied by operculum which onscures lingulas in unceal specimens lingula as shown in Fine \&, winhour - pical setas fohataciers of vasiform orifiez eshemfally the same throughnut larval stages.l: vasiforn ontiee about 0.06 mm long in male. 18.077 mots in fomale inset from posterdor puparial maretill
 females suddal linrow delined by shotlow ridge to cither side hul withou markitgs. eyespot makkings absant. On venter antemate dimorphice as discotsied atoove, bases placed batecal to fore legs; legs each wilh apical adtesion pad: madde and hind lese coth who liny hasal seta and spine; ventral abdomimat state phaced slightly anterior to dorsal 8th ahdommal seters candal and thoracid tracheal disds prosent. namons. pater then whacent eaticle ond pumetuated by darker avoit markings: when venier separated from the domami. submedian soca seet the he much paler Whan suhmpugin/subdrame (a chamater rypical ise Zaphaneror).

Thuil-mivan Tumat 1Figes 2, 9)

F-longate wal, outtine subtly constricted shightly antecior of Tong mesi-metathoracie diyision (casily mistaken for eephatathoracis-abdominal division hut fond legs cleaty underlic apparend lirst abdominal segment). at which point coatse marginal crenulations are somewhat finco in some individuals: third-instar -exue is abserved to fold at this mesometathofaco diviston; sexual domoghism appotent.
 1) 49-0.53 mm wide (presumed male) or 1.78-1.27 mm long. 0.56-4 n 3 nm wide (presunced female). all
 with median nigntented patels overlying maulppates
and fore logs, another on abdaminal segments $1-|t|$, and beomyish median pigmentation piesent between vasiform orilice and ahdominal division V/I/VIII: anterior and posterior inarginal setale presenta dorsal chatotaxy same ts it puparma setae shor and blunt or very slightly erpibate abdomimal intersegmental divesions $11 / / I I$ in $V I / V I I$ propounced, extending into buter subdorsum: subnectiart abotomimul depressikns distinct. thoracie equivalems marked as in puparia: submedian zonc rhachisform; submargin with rove of gemimate pore porettes: legs typical for third-iosim. rathor lriangular, fore and middle pairs wilh apical pads dineeted laterad hut hind pair direcled posternoly: anmbua veshigal, phaed anterion to balses of fore legs.

Second-instar harva (Figs? 10)

I longate oval. ont line suhily eonsarieted antorior to lang meso-metarthoracic divestont. which is only intersegmental devision extending ioto suhdorsum; cuticle mosity pale bul with sume dasky pigmentation on rhachisform suhmedian atevt si/e -0.60)-0.70 $\mathrm{mm} \times(1.27-0.33 \mathrm{~mm}(\mathrm{it}=34)$. macein worsely crenulate zoterior and postevior masgimal sclac present. large with respect bo hody siec, dersol chacelaxy ipparondy ats in puprarimin and Thard instar, but unly ? puils of thotacic and simgle pair of submedian Sth alodominal betac distmea in alf specimens: sther individats with op pars of subdorsas ibdominal and thital lhomacic pair of sedal bases always visible but seag thenselves variably.
 pescont atotind periphery of thathis lugs subiriamgutar, zpical pads distmet: miemas vestigial. anterion to fore legs, lateral ion basial (anterion pari of rostral apparatus:

Fipxi-mande latrae (Tig. 11)

 margin wirh If pairs of finger-like protrusimos. smooth herween them each marginal protrwion beatiog sela- interion and posterior-most 3 pais being lang and matikes remainder shorl. shathly capitate: betsecen tho atterior-most 2 pats of protruston-bothe setae is a pair krising from the smesth margin, presumad to bo the anterior onargenal selae: on this basis, posterion margimal sotac athenti ith in second and third instars. mosi pronounces intersegmental division is belweon messo- attd metathosex: dotsum with 4 paits of eephatorbonmexe and 7 pairs of afodominal subdorsal capitate setae; yentrally appendages reflect mobility of this stage, each leg woth single artienlation betweer enxis temmer and litria/tarsus; cura discemible: darsus not distimet from tobia hut distal segment of leg with ipparenl single claw-like apex and distinct clubtied subapical digitule each antenia with 3 distinet segmentio

$$
12
$$

14

16
17

Figs 12-17. Zaphanera paprocarpoe Martin op, noto, adult characters. 12. Male antemal segment 11I. 13. Mate antemal sienment IV. with single convoluted sensorium shown. 14. Female antennal segments III-VII. 15. Latteral view of male gental segment. 16, Lateral view of mate aedeagus. 17. Dorsal view of male abdomen, with expabded detail of opereulum and lingula.
distal one longestand extending postertonly for hase of middle leg: rostral base and xentral atodonimal sclate line at lunst as large as vasoforn orifices

F2 (1) ig 1)
Bhack, bome at apex of a long pedicel angled suef that ege usedf atmost buctios the phyllode sulace, laid on to phylluide surfaces. often interspersed woth larval stages.

Adull mate Figs 12. 13. 15-17)

1.73-1.k7 intm long (iucluding pataneres). antenes (0.81-1).90 um, ultimate rostral segment $0.109-6.125 \mathrm{mmm}(\mathrm{n}-4)$: wangs dypical for Aleyrodinas. with main vein of fore and hored wiog untranehed. wings unpignenicd; abdomen bearing 4
 (17ig: 17): parancres, aedengus, aperculan and Lingifla as illustrated (figs 15-17); entive abdomen. unterier to genital segment, very linely spinalose. apmariog greyish under lower magnilicatom: anchnace with only 4 visible segments. segment if usually distinetly ingled in its hasal thred and with smek, chealar, ciliate sensoriom proximad of this. "thow" (Fig, I a), the 2 (tweillar segments cach wit) much convalued but apparently single. sensurium loopping pepeatedly anound the segment (1/igs 12. 13).

Nixult fomule (Figs 3. 14)

1.78-1.47 rimi long, antcunace 0.62-0.75 biom. uhtinute kustal segment $0.10-0.13 \mathrm{~mm}$ ($10-8$) wing characters 44 in malo; abdomen hearing omly 2 pais of oval wad glands, about $0,10 \mathrm{~mm}$ longe; abdominal surface very linely sponulose, as in mate, antemmac. 7 segmented, IV and V much sharter than remainder of magellar segmenise, msually with segment VII bearing 2 simuous sentioria (the distal one being the longest). sugnem VI with one sinuous sensotime and scgment III with a subapisal sensorium of itregular outline: but not clengate:

E'omolugy

Named after is hust plam. Acucta prymonearma (Leguminosae: Mmosoideae), the westem myall. from which is takes both its specitic mane and suggesfed common wame, western myall whitelly.

Tasourmic relutiomships

Amongst the four deseribed Austrialian species of Zophanare, the puparia of $\%$ nopprocarpue sp. nov. appear closest to Z miger (Maskeli) and nearly key an such in Martin's (1999) key. Zaphanera papyrocurpue shanes with 16 niger a lack of submedian glandular palches, presence of submediam pairs of aburting abdominal lubercles and exeeptonally prowsured intersegmental disisions

develop aligned along the narrow, subeylinutrival phyllodes of the western mavall. It was mitrally suspected that the new species might be a varimet of 7. mgor, developng greater convexity and a more elougate puparial outtine in response in ite feeding envromment. However, chace examimathom has indiontal sevenal other, consiatent, dratacters than separate thene ive laxa. fhe most srikinge charauleristic of the puparia of \% podyencompoes is the extreme forward-vorying of the iransterse monlting sotmes, and abdaminal metsegmental divisions 11/3ff to V/VI, a feature not sech in any ohere examined memhers of the genus, whether
 differ from those ot $/$. niger in only prossessing three palus of cephalothoracic sctac of which two phire hes displaced inter subdorsumb (\% Miger has six sephalothoravic pairs, all submargimal), in mot pussensing a submarginal pair of setae on abdominal segment III (present in 7 nigerfand in having a shom lateral ftachis: arm issumb from the outer hasal odge of tach abdeminal anmerisity-difected lubercle (कhachis completely undeveluped in $\%$ migep) Puparia of \% miger have very whall, hun distinet. submedian abdominal depressions mid way between the indersogmental divisions. Whereas the depressions in 2 prapurociation are diflicult to sees. given the greater development of the sobmediam abdominal tuberales. Phird-instar larsae of \angle pepyoncerpere are elongate-oval (more hrondly rectangular in Z nigen), will charactenstic subnediat pigmentation (completely pale in 7 meger ${ }^{\prime}$ and ctongate submedan ahdemimal depressions (encolar in Z migen) and with a pronounced submedian thachis leompletely fbsent in Z. mger).

To date, the adults of \angle puppyacapoue are the only innges known for any species of Raphensera. Thus. no conclusions call yet be dratyon as to Whether any of the several unusnat adull charaters asseribed atoove are generie of apecific: Certainly, the presence of anly fwo pairs of abdominiat wax glands in the females is not uspal in the Aleyrodinite and the characteristic convoluted antenmil semsoria of both seses are similarly remarkahle:

Life cartera) Zaphanera papyrocapae

Westert myall whitetly had two distinet gencrations per year during the study (Fig. 18). All atturn-winter gencration commenced with egegs taid in late February and at sprom-stmmer gencration started from egge laid in October. The egegs hatel into mobile first instat harvac that could somelimes. be seen dispersing of phyflodes. The sedentary second and thind instar larvac (Fig. 2) developed more slowly in winter than in the summer: The fourth "Intal laryae ("pupae') were conspiumens on

phytorbes, where latige numbers alien appeated on

 asmodiaded with whitelly lam ace. Adults (Fige 3) lived
 the hathanatiy at 24° (Cm a provided with maistare. Ine Feblualy 20000 simple was taken inmadialely fillow ing rain and the adolls were observed fying in

limmg of genemions and life history stages con be domgly estimated lion Fig. 18. Taking into asenunt the period bewwen egg layings. the autumnwhiter gencration takes appoximately seven memtios atid the spring-summer genctation five montlas. Eges appean to hatch one a perisel of no more than kinu
 wecks in Alareh-April and +6 wecks in September-
 Weeces in Apriloseppember and eight weeks in
 four wecks in soptonher but up to eight wecks in limanry-licboraary.

Di'maracurian al amherath

 morth ind morth-wes al Raxby loushs (IGg. 19) Giecs showing syonptoms of dibbate and death

 any 1. poperearom trec

Within the asea al mlentations. mulga mese (1
 wilh Hexacm myall. ill sumic Lasen wilh bouchinge

 accasionally found un them.

Dı"mase

 hamded trees eximmed during the stady. those with
 presene ol western myall whitely, Sympons an

 follage an biamelos itig. 5 and then dealla of werdy
 mantre on young teres. death of the whole tree may aceur wilhin anc year. As a mugh cstimate, allath al
 Weas: likely to lice.

(1 保 $2(1)-27$)

ficmula

B.cnglli 1.1.3-1.40 min (1.f0 mon in holotype). Fratonertey pake mange-yellow, paler in oediar

 dorsal stripe extending along must ol vorsal mangen. pedicel wath basal hoo thiek dorsally and lateratly. dark brown. almost buck venually and it apos.
 prosimal sesmbents darker: anterior half al prometun! black. posterior latfuanstucen pale, yellow or white mal chothed in framplacen white sedac: mesescentum

Fig. 19. Surveys al western myall trees on which western myall whitelly. Zaphanera papyrecurpete Martin sp. nov., Wats detected between November, 1994 and IIly, 20)(\%), The northern edge of the nubreak was not delimited.
shining, metallic bluc-green in anterior two-thirds, yellow in posterior one-third and along lateral margins, extreme posterior margin black; axillac yellow; scutellum mostly shining, metallic bluegreen mixed, posteriorly purple, apex and lateral margins posteriorly yellow; tegula white with brown apical spot: dorsum of thorax elothed in dense,
translucent, white setae; metanotim medially yellow, laterally black; prepectus translucent white, anteriorly dark brown; mesopleuron with small yellow spot helow tegula but generally melallic green, bluish posteriorly, slightly purplish dorsally: prosternum metallic green; fore leg with coxa and femur yellow, tibia yellow mixed dusky and

Thateined bross dorsally and veotrally, tarsus pate hown mixed yellow prelarsus dark browne thesusternum metallic green: inid coxa metallie groen and clothed in conspicuous tanslucent, whitesetia, igex vellow, femur ycilow, tibla shighty dusky yellow with an incomspictous brown stripe alone most of dersal mangin. rarsus pale yellow with pretarsis dak hrown; hind ena medtlic bleween mixed with pupplezand elothat wefth translacent pale brown gr whilish serae: hind femur yellow, hind tibia yellow hut with narrenw brown band at hase and twe broad hrown bands at one-third and two-thirds is length respectivels: tarsuis desky yellow, pretarsis dark brown wings cmoplecty byaline, venation hrown: melapleumen metallic green and clothed in sonspicuous tranatuent white setae: propodeum medially hack with slight sheen. greenish towateds spitactes, shiting bluc-greem sulside spiracle here
 setac: gaster dark brown but with stong. menallic: blue-green or purpdisth sheen and elothed in baitly conspictious, translucent, whitesctac ou busal wrgitu and talerally: visible patl or genostylus yellow wilh exteme apex brownist: head about 33 x as broad at Frontencetex which is aboun 1.6 a as longe as horod fund thatrovest between anterion ocellise and top of surobes. ocell forming an acule angle so atome 70 : awemal llige 20 with scape atmast cylindricils a litte less than 5 x as long as broad: H1-5 sulquadrate, distat segments largest. For elearly mansverse and largest, clava with apical sensory thea distine eivine apex stightily onlopucty muncate appearance: hneal sernilla on $\mathrm{C} 3-6$ and clava: mandibles (Fig. 21) tridentale upper tooth somewhis Huncate relative meastaments: HW $-76, \mathrm{FV}=27$, $\mathrm{POL}-12,5, \mathrm{OOL} 2.5, \mathrm{OCL}-7, \mathrm{MS}-25 ; \mathrm{F},=42$, 1.W-30, SL 29, SW-6.5, Visithe part of mesoscutum about 2 x as broad as longe scutellum hatdly shorter that mesoseutum and slighty broader than long: fore wing about 2.68 as leng as broud; limea clava not interrupted, but elosed by one or swo lines of selae neat poskerier wing margin; basal celf demsely and evenly puose: venatuon as in Fis. 22: celative measurememb: EWL $=1 * 5$, EWIV-7). HWI 1.35. HWW-42: gister about trae-fillto aly long as thoras: ovipesitor as in 1/es. 24 exserted pari less than one-fitt us song as mid tibal spur: liyponygium (Fig, 23) ractung athout half way atong gaster, refalive menarements (paraype): $0 \mathrm{~L}=44, \mathrm{MT}=34$ (il -H .

Mall

Length 0.98-1.29 mint; very simitar to lemale skept for some small differences in eoloutation, wider fromovertex, antenal stuctue (tig, 25), less dense setacio basal edt of torenvine and strucluce of genitatia: coleur as in lematebut for small metallic: green spel immestialely behind anterine socllus.

Haystlum generally yellow with extrome apes of clava brown: mesoscumin. axillie and scutellum complecly meallic hlye-green; fore tibia with only a smatl subapicala brown spol on dorsal margin ollerwise fore and mid titia-yellow: hardy marked with browne hesa theut 23 x its broud ats frontovertex which is uhtout $1.3 x$ ats long at hoodd and narfosest atrout level with aderion marions al posterion ocellt: serobes broad. sutbparallel and moderalely deep: a smail depression betwest cath serobe dussally and eye which possithly accommodates F1 in restine position ocellif forming angle of aboul 95^{\prime}, andennal ionulus separated from moulh margit by slighty more than 1.5 s its envor Jenglh with vetural magin a litde above lower eye marging antenna (5 "if. 75) with scape shor and obly abour 2 x at long as broud: flagetlum cloflect in ling sclue which on provinat segments dossatls are clearly longee then diamelen of segments; P1 suhquadrateand wihdeen, dorsal gheove giveng it a
 lonte as broad boll giving the rest of the fimiete at slighty serrate appearance: cliva subcylindrical and a littelens han $3 x$ as lang is broad, with apex mare or less transiversely trancate relative measurenichts: HW 71. FV 31. $\mathrm{POL}=19, \mathrm{OOL}=3, \quad \mathrm{OCL}=7$ MS 20. H1 $35,1: W-30 . S L=2 \pi, S W-45$; Fore wing nbour 2 sas long as hoad basal ecll will netate conspieuously less dense than in apical hutr of wing with distinct naked areas noar base and befow parastigma: platice measatements: 1.W2-6iss FWW 31. IIWL-47. $17 W W=14$; vedergen about half as long as mid tibia, is supex broadly spatulate (Fig, 27), relarve mensarmients:AL-32, M1-70.

Host

 (Hemptera: Aleyrodidac) on teve a papspocatpa.

Taxomembis relatronstips

Zuthopataides has been characterised by Nowes \& Hayay (1984) and Dahms \& Gordh (1997) und ancludes four previously deseritiod stecies. Fomalen of \angle anarener sp. nove are trise similar to those of 2 spectustas Giamit in gencrat structure and colentation of the liead and dorsam of the therax. The fwo species eal be distinguished on the distribution of linear sensilta on the functe and colouration of the hind libise and fore wige. In / amareme lincar sensifta are present obly ana-Fo. the hind tithia has a pait of distinct brown bands and the lore withe is eonpletely hyatine, whereas in 8. sporioser all humicte segments possess limear sensilla, the hind tibia is almosis sumpletely hrown Without any distine hande and the fore wing has a large subcircular infuseate alea helow whe mangonal

 (1f acdeagus)

Peyn Females ar the other species difies in having

 least FI strongly transverse and about 2 x us broad ut
 ate known only for $7 /$ cimetiblomas and have the miennal tlagellum filiform with I 1 monodified and chothed in setac whichare vory mueh shoten than the dixmeter of the segments.

There are few athenticated secords of Encyrtidate ats patasitoids of whiteflies. To drate species of 11 encyptid genera have been reconded as whitetty patasilonds (Noyen 1998). Most of these are likely io be emoncous observations of one-oft "decidents' where spectes thall normally allack diaspithd seates or other smatler voccoids may attempi to parasitise ateyrodids when ihetrmomal hosts are searee. Other than some madescribed species of Mequp/acysfiequently reared trom whitefles in Soudh Aomerica (material in BMNTI) and R/oqmus emandif (Myarsteva) (combs. now. firom Platrowous) hrom central Asia, \& amasenom appests so be the lirst species to be atothenticated ats at trae parsitoid of aley rodids.

Rutles al parasi/tisum

Parasinised pugat wese identried by the cirenlon sevt hole and predated popac by a jageed hoke. The anly parasitond that emerged from samples of \% papemacar pore was Zarhopralonder atharemor Noyes sp. nov. The bates of parasilism of pupac of to pafympermat are showll for fwo periods in Table 1. No parmitond uxil lootes were detected in imy stage sother tham the puphe.

Date villected	Tolal pitpae (ii)		predatinn
151.ch 2000)	94	t	$\leq 1 \%$
2 fO 0 ct 2000	281	10	< 13,

Discustion

The onulbreak of western myall whitely and the astoke quted death of many of its hose erees is untusual nod the enuse(s) have not been stablished with any certainty during this sudy. A number of posstble ctuses are diseussed beloms

The parasituid 2. amescome was the only materal enemy idemblied durng this study bui the hiolagy uf this wasp has bus yet heet studed in detail. The tate of parabitism an westert myall whitetly was (14)

Egeater than 10 oran dumm this sendy and so it is untikely to have been stanticant of reduenge numbers of llas species.

There was the evidence that the gulbreak of X
 zeneralist predators or parasitoids. The presemed of prodators was inferted trom diggeed botes in puparia hui predation of younger sfages of whinefly wers unlikely wh have been detected beeatuse exrdence of Hesee stages may fall from the pholloges. Ieges of boown laceswags (Misrours. spp, - Neuroplera: Hemerobidae) were frequently observed on sumpled phylfodes. Thas the influenee of general predators may have been geeater than indicated by these results. However; any failure of these predaters should bave been in evidence on wher species कf thees. At a number of sites in the Rewby Downs anea. westen myall (d. patprocama) mes indested will whitefly grow in close proximity to mulea (1. (athella), somelimes wils overlappitg canopios. (bureful searching of suef mulga irees yielded a different speeies of whitefly but in very lass in numbers. This mulga-associated whitelty was chearly not undergoing any increase in population which migha be expected if generalist natural emomies had been absent from the area.

if hew imuradnction

This study has not stiminated the possibility that the original pland hose of the wholelly was a species of Soucid other than A. murvorecuthe. Searches of naturally-becurting Actacia species it the area of Roxhy Downs did not yield any 7. papyoculpate on hoses other them westem myath. It is possible that Jone ia specics exatie to the Roxby Downs region maty have been introduced and carried the wholefly to the area. This whitefly may then have sivitehed to Acaces paryseacarpa but not 10 moy other teacea speces in the areat. Martin (1999) notes that the related species 7. meger has three recorded hosts: - fickia posemantio Bentham. 1. Lomsilolia (Andews) Willd and 4. medanosylom R. Br. More data on the host range of \angle. papprocarpas need wh be collected to lost the hypothess that this whitelly hats recently astipted to A. paprovearpor

Tree herill

Dying western myall trees were hirst maticed in the (ownship of Roxby Downs in 1998 (Ireland mpobs.) Roxby Downs is a moring towa constructed durine the past 20 years around existing communites of ntahtere western myall fress. A large copper-uratiom mine is localed some 20 km from Roxby Downs and, beyond the limils of the mine area itself. there is no evidence of actal or effluent emissions in the amosphere of groundwater which might affeet tree bestits.

Some toees within the township had their extensive root systems disturbed by rozel works and other trees had changed water availability, mainly an increase. resultury from garden irrigation. While the western myall trees in Roxby Downs township live in a distubed emvemment, the same is not trae of the sympromatic trees up to 100 km distant in the pastoral areas to the morth and noth-west ol the lown where land the has changed litte during the past too years. with sheep, catle, rabbits and red kangatoos as the maingrazing and brow sing macrofana, White (1993) argues that nutritional status ot host patats may callse outbreaks of inceet populations. In the present catse, western myall treen under some form of stress may have provided optimum conditions for the hithero unconmon Z. papprocarpace to increase its reproductive rate temporarily to outpace its matural enemies. However, the ara containing symphomatic trees covers about $10,000 \mathrm{~km}$. including both recenty distarbed lownship areas and pastorat areas whose land use has temained unchanged for many years: Age of trees does not appear to be a bactor, as
both younger ($1-2$ in higti) and older trees, 110100 an high, and at leas 160 years old (Lange \& Sparmo 1992) or okler (Coleman th al. 1996). sustain high whitefly nombers and exhibit diethack innel death. There have been no discenible changes in raintiall pattems for the past 70 years. Therefore since conditions for tree growth have remained much the same, there is no evidence to support the suggesion that poor tree health was a contributing factor to the outbrak al"western myall whitedly ind consequent death of trees.

Achowledgntents

We wish to thank WMC (Olympic Dam) for their interest and co-operation during this study. In particular: J. 7.war, K, Ashby and I. Read provided concoburagement, support and critical comment in çual amounts. Our thanks also to J. Jlardy who helped with lield and laboratory work. M. lybal whor assisted with the preparation of digital images and plates, It. Kateser. What compiled figure I and N. Sehelthom who kindly read the manuseriph.

References

 deeseribed liom Ausballa by Λ. A. (ibauth with a

 320.

 Wiorlo. Biodiscosily Cataloge Ditahame and lubage I Abraty CDronn Serses. ETV/Thas Natural IImany Nuscainl.
 Indo Powilic Facyrlidae (Itymenorplera: Chatcidmadeal. Bull. Br: Mhas. (N. H.) (Finlomm/ag') 48. 1.31-395.
Whats, T. (. R. (1993) "The badequate Linvirymmen. Nitrogen and the Abmodame of Ammalso (Spmine er Verlider. Barlint.

[^0]: South Australian Researelo de Development Institute. Embomology Scetom. Waite Campus, GPO Box 397 Adelade SA 5001 S-mant: billey.petel Tarsalgovat.govalu
 Deparfment of Entomotogy. The Natural History Museum Cromwell Road London SW7 5BD UK.
 霉 Deporment of Applied \& Molecular Ecology and Centre lor livolotinary Biology \& Bindiversily. Adelade Univer Campue Private Bag 1 Glen Owmond SA 506-
 Whatem myall (Acosiar papyrmarara Benth.). "Rangelands in it Whatainable bispopere". Proceedings of the Fitth Internationat Ramgeland Compress Salt Lathe Cily, Llah. USA 23-28 July. 1995. Volume I conmibutel presembitions. 1996. 99-100. (Suciety for Range Mandgement. Denver, Coloriale, USA) (unpulb.).
 RRIFANO, (C. (1997). Sustaining the western myall woodtands: conlogy and management. PhD Thesis, Deparment ol İnvirnmental Scjence ancl Rangeland Management. Adebade (Iniversity (unpub.).

